سفارش تبلیغ
صبا ویژن

دانشگاه آزاد اسلامی واحد شهرضا دانشجویان اندیشه سیاسی دراسلام

نظریات خیام و فارابی درباره جبر

در طبقه بندیهای یونانیان از علوم، نام علم جبر جزء علوم ریاضی نیامده است. نخستین کسی که جبر را در طبقه بندی علوم داخل کرده فارابی[واژه‌نامه 29] است که در احصاءالعلوم خود بخشی را به «علم الحیل» یا «علوم الحیل» اختصاص داده است .[19] این علوم، که فارابی در تعریف آنها می‌گوید:

« علمِ شیوة چاره جویی است برای کاربرد آنچه وجودشان در ریاضیات با برهان ثابت شده و انطباق آنها بااجسام طبیعی  »

سپس قسمتی از آن علم را حیل عددی می‌نامد که: «شامل علمی است در میان مردم زمان ما به جبر و مقابله معروف است» از اینکه فارابی جبر را جزء علوم حیل آورده، معلوم می‌شود که از نظر او هنوز جبر نه علمی برهانی بلکه مجموعه‌ای از شگردها برای استخراج ریشه‌های معادلات شمرده می شده است. این دیدگاه به نحوی در طبقه بندی ابن سینا[واژه‌نامه 30] از علوم هم منعکس شده است. وی در رسالة فی اقسام العلوم العقلیة (ص 122) جبر را جزء «اجزاء فرعی (الاقسام الفرعیة) ریاضیات» آورده و آن را، در کنار «عمل جمع و تفریق بر حَسَب حساب هندی» یکی از «شاخه‌های علم اعداد (من فروع علم العدد)» شمرده است .[19][17] خیام در رسالة جبر و مقابلة خود، «صناعت جبر و مقابله» را یکی از «مفاهیم ریاضی» می شمارد «که در بخشی از فلسفه که به ریاضی معروف است، بدان نیاز می‌افتد». هرچند خیام در این عبارت در صدد به دست دادن تعریفی جامع و مانع از جبر نیست، اما از نوشتة او چنین استفاده می‌شود که جبر اولاً «صناعت» است و ثانیاً جزء علوم ریاضی است. نتیجة کلی سخن وی این است که جبر در طبقه بندی کلی علوم فلسفی قرار می‌گیرد، هرچند او جایگاه آن را در میان این علوم مشخص نمی‌کند. وی همچنین در تعریف جبر می‌نویسد که:

« فن جبر و مقابله فنی علمی است که موضوع آن عدد مطلق و مقادیر قابل سنجش است از آن جهت که مجهول اند ولی مرتبط با چیز معلومی هستند که به وسیلة آن می‌توان آنها را استخراج کرد  »

بنابراین، در نظر خیام، مقادیر عددی و مقادیر هندسی هر دو می‌توانند ریشة معادلات جبری باشند. او در رسالة دیگر خود به نام فی قسمة ربع الدائرةنیز تلویحاً با این فکر که جبر مجموعه‌ای از شگردها («حیله»، توجه کنید که در تقسیم بندی فارابی جبر جزء «علوم الحیل» قرار می‌گیرد) باشد مخالفت می‌کند.[19] خیام می‌نویسد:

« آنکه گمان برده است که جبر حیله‌ای (شگردی) برای استخراج اعداد مجهول است، امر نامعقولی را گمان برده است . ... جبر و مقابله اموری هندسی است که به وسیلة اَشکال پنجم و ششم مقالة دوم (اصول اقلیدس) مبرهن می‌شود[17][19]  »

به این ترتیب، جبر و مقابله، از نظر خیام، علمی هندسی است و چون هندسی است بُرهانی نیز هست. این اختلاف در جایگاه جبر به دلیل تازگی این علم و دو تصوری است که از آغاز این علم به موازات هم وجود داشته است. در طبقه بندیهای متأخر علم جبر و مقابله «از فروع علم حساب» شمرده شده است. اما باید توجه داشت که این طبقه بندیها به دورانی تعلق دارند که دستاوردهای بزرگ علم جبر دوران اسلامی فراموش شده و از آن تقریباً چیزی جز حل شش دسته معادلة خوارزمی باقی نمانده بود.[19]

رساله حساب خوارزمی

اثر ریاضی دیگری که چندی پس از جبر نوشته شد رساله‌ای است مقدماتی در حساب به نام «الجمع و التفریق» که ارقام هندی (یا به غلط ارقام عربی) در آن به کار رفته بود و نخستین کتابی بود که نظام ارزش مکانی را (که آن نیز از هند بود) به نحوی اصولی و منظم شرح می‌داد. این کتاب تنها از طریق ترجمه لاتینی آن به ما رسیده است و نسخه منحصربه‌فرد این ترجمه به زبان لاتینی و با عنوان Algorithmi numero indorum در کتابخانه دانشگاه کمبریج نگهداری می‌شود.[9] خوارزمی در کتاب حساب خود نشان می‌دهد که چطور می‌توان هر عدد دلخواه را به کمک نه رقم هندسی و صفر نوشت. سپس اعمال مربوز به جمع و تفریق، دو برابر کردن، نصف کردن، ضرب، تقسیم و جذر گرفتن از اعداد صحیح و همچنین عملیات محاسبه‌ای مربوط به کسرهای شصت شصتی را شرح می‌دهد. خوارزمی جذر اعداد را با شیوه ریاضیدان و منجم قرن پنجم هندی «آریابهاتا[واژه‌نامه 31]» می‌گرفت که براساس مجذور یک دو جمله‌ای قرار داشت. رساله خوارزمی را رابرت آوچستر[واژه‌نامه 32] تحت عنوان «حساب الهند خوارزمی» به زبان لاتینی ترجمه کرده است.[9]


برگی از ترجمه کتاب جمع و تفریق با عددهای هندی

برگی از جداول زیج خوارزمی

نجوم

یکی از کارهای مهم خوارزمی را باید در تلفیق علوم یونانی و هندی دانست. کاری که در جهان اسلام برای نخستین بار توسط وی صورت گرفت و با نظر به اینکه سرزمین ایران و جهان اسلام به شکل حلقه پیوند دهنده‌ای میان شرق و غرب عالم و دنیاهای اروپاییان و هندیان در میانه ایستاده بوده و با فواصل بعید و شرایط سخت و ناهموار که برای جابجایی انسان‌ها و به تبع آن انتقال فرهنگ‌ها و دانش‌ها وجود داشت، هر زمان اهمیت این خدمت بزرگ در چنان عصر و زمانی برای بشر امروزی بیشتر نمایان می‌شود. خوارزمی در سایر رشته‌های علوم و مخصوصا نجوم هم کاری جالب و سودمند انجام داد؛ او دو کتاب در اسطرلاب[واژه‌نامه 33] نوشت؛ اطلسی از نقشه آسمان و زمین تهیه کرد؛ و نیز نقشه‌های جغرافیایی بطلمیوس[واژه‌نامه 34] را اصلاح کرد.[19] عنوان کتاب نجومی خوارزمی «زیج السند هند» است. اصل آن به زبان سانسکریت است که توسط یکی از اعضای هیات سیاسی در عصر منصور عباسی به جهان اسلام انتقال یافت.«زیج[واژه‌نامه 35]» به معنی دسته‌ای از جداول نجومی بوده و «السند هند» نیز تحریفی از کلمه سانسکریت «سدهانته» عنوان اصلی کتاب بوده است.[9] این ترجمه مبنای آثار نجومی شد که فزاری[واژه‌نامه 36] و یعقوب بن طارق[واژه‌نامه 37] در اواخر قرن دوم هجری تصنیف کردند. اهمیت این کتاب امروز در این است که نخستین اثر نجومی عربی است که به صورت کامل به دست ما رسیده است. خوارزمی در تهیه زیج خود تنها تابع سند هند یا مجسطی بطلمیوس نبوده و به آثار منجمان ایرانی نیز نظر داشته و مطابق با رای خود مطالب را اختیار کرده است. مهم‌ترین شخصیت علمی که از زیج خوارزمی فراوان استفاده کرده، همانا ابوریحان بیرونی است که حتی وی کتابی درباره تحلیل علل زیج خوارزمی نوشته است. در سده دهم هجری این زیج توسط مسلمةبن احمد مجریطی[واژه‌نامه 38] تهذیب شد و در سال 1126 م. توسط آدلار آوباث به زبان لاتینی ترجه شد. متخصصان نجوم و ستاره‌شناسی این بخش را بهتر درک می‌کنند که جداول خوارزمی علاوه بر «جیب» مشتمل بر «ظل» نیز است. جیب یا جیا در اصل همان وتر است. رساله نجوم خوارزمی در واقع شامل جدول سینوس‌هاست که اولین بار منجمان هندی در قرن پنجم میلادی وارد ریاضی کردند و همین واژه وتر و جیب و جیا بود که وقتی از زبان عربی وارد ادبیات علمی شد، توسط مترجمان قرون وسطی به زبان لاتینی به «سینوس» ترجمه شد.[14][9] ساختار ریاضی و مقادیر بنیادین پارامتر کلیه جدول‌ها در ترجمه لاتین «زیج السند هند» خوارزمی عملاً بررسی شده و براساس اطلاعات ریاضی که بدست آمده می‌توان اصل و منشا این جداول را به تحقیق مشخص نمود، یکی از جدول‌هایی که ساختار ریاضی آن هنوز مشخص نشده، جدول مربوط به «تعدیل زمان» در زیج خوارزمی می‌باشد.[22]

محمدبن موسی همچنین دو کتاب در اسطرلاب دارد که اسم‌هایی تقریباً نزدیک به هم دارند: یکی کتاب «عمل الاصطرلاب» درباره چگونگی ساختن اسطرلاب، و دیگری اثر «العمل بالاسطرلاب» در چگونگی به کار بردن و استفاده از این وسیله اندازه‌گیری نجومی. این دو کتاب مانند بسیاری از کتاب‌های دیگر در این زمینه باید نوشته شده باشد و اگر هم مطلب تازه‌ای در آنها مطرح شده باشد نمی‌دانیم چرا که شاید تنها ویژگی مهم این دو اثر و نیز کتاب «الرخامه» خوارزمی که درباره ساعت آفتابی افقی نوشته شده، این باشد که هیچ اثری نه از متن عربی آنها و نه ترجمه‌ای به زبان دیگر باقی نمانده و فقط گهگاه معاصران وی که به اصل کتاب‌ها دسترسی داشته‌اند، اشاراتی و گریزهایی به کتاب می‌زنند. این کتاب بیشتر برای تعیین اوقات نماز نوشته شده که بعدها اساس و پایه محاسبات مثلثات کروی قرار گرفت.[9] خوارزمی مقاله‌ای هم با نام «مقالة فی استخراج تاریخ الیهود و اعیادهم» دارد که با دقت در نام این اثر متوجه می‌شویم که وی هم از وجه منجم بودن و هم جغرافیادان و مورخ بودنش در تنظیم این مقاله استفاده کرده است. نسخه‌ای خطی از این مقاله در کتابخانه بانکیپور موجود است و می‌توان فهمید که این دانشمند فن‌شناس، تنها در حوزه مطالعات خاور فعال نبوده و نیم‌نگاهی هم به باختر عالم داشته است، آن هم در حوزه‌ای مثل یهود با آن همه حساسیت‌هایی که هماره در جهان اسلام نسبت به این قوم و آیین وجود داشته و چنین حرکتی جای تامل بیش از پیش در کار وی و هم‌عصرانش را می‌طلبد.[14]

تاریخ و جغرافیا

در بخش معرفی آغازین این نوشتار، از محمدبن موسی الخوارزمی المجوسی با عناوین مورخ و جغرافیادان نیز یاد شد که ذکر این موارد بی‌دلیل نبوده و دلیل آن ارجاع به کتابی تحت عنوان «صورة الارض» است و نیز کتابی نایافته ولی منتسب به خوارزمی تحت نام «التأریخ». جغرافیای خوارزمی با عنوان صورةالارض، تمام آن عبارت از طول‌ها و عرض‌های شهرها و محل‌های مختلف روی ربع مسکون بود و در هر بخش جاها بر حسب «هفت اقلیم» مرتب شده بود که این تقسیم‌بندی پیشتر نیز سابقه داشت. نام‌های بسیاری جای‌ها که در کتاب بطلمیوس آمده، در کتاب خوارزمی هم دیده می‌شود و مختصات ذکر شده بر آنها، گاه یکسان یا بنابر روشی منظم متفاوت است ولی بسیار دور از آن است که ترجمه یا اقتباسی از رساله بطلمیوس بوده باشد و ترتیب نقشه‌ها و کتاب از ریشه متفاوت است. این کتاب را «نالینو»[واژه‌نامه 39] به ایتالیایی ترجمه کرده و او اساس نقشه در دسترس خوارزمی را نقشه دقیق تهیه شده به امر مامون می‌داند که حتی از نقشه‌های بطلمیوس دقیق‌تر بوده است و بعید نیست خود خوارزمی هم جزو دست‌اندرکاران نقشه اصلی بوده باشد. به هر حال نقشه‌ای که از متن خوارزمی استخراج می‌شود از چند لحاظ درست‌تر از نقشه بطلمیوس است مخصوصا سرزمین‌هایی که زیر فرمان اسلام قرار داشتند. بهبود عمده آن کوتاه کردن درازی گزاف دریای مدیترانه در نقشه‌های بطلمیوس است. هر چند گاه اشتباهاتی بیش از بطلمیوس هم دارد.[14] این کتاب شش بخش داشت و شامل مطالب زیر بود[9]:

  1. فهرست اسامی شهرها
  2. کوها و مختصات نقاط دو طرف استقرار آنها
  3. دریاها و مختصات با ذکر نقاط برجسته واقع بر خطهای کرانه‌ای و توصیف اجمالی آنها
  4. جزیره‌ها با ذکر مختصات مرکز وطول و عرض آنها
  5. نقاط مرکزی نواحی جغرافیایی
  6. رودهابا ذکر نقاط برجسته و شهرهای واقع بر کرانه‌های آنها

ولی کتاب التاریخ خوارزمی موجود نیست، ولی چند مورخ از او به عنوان «مرجعی معتبر» برای حوادث دوره اسلامی نقل کرده‌اند. امکان دارد که خوارزمی در آن اثر (همچون معاصرش ابومعشر[واژه‌نامه 40]) علاقه‌ای به این امر بروز داده باشد که تاریخ را همچون وسیله‌ای برای عملی شدن اصول احکام نجوم مورد تفسیر و تعبیر قرار دهد و حتی ممکن است مثل حمزه اصفهانی‌ها به عنوان مثال در مورد زمان زایش رسول‌الله بنابر استنتاجات احکام نجومی مستخرج از حوادث زندگی ایشان، به قول خوارزمی استناد و اعتماد کرده باشند.مسعودی[واژه‌نامه 41] مورخ مشهور در مورج الذهب خوارزمی را در زمره مورخان آورده و چند مورخ به آن کتاب استناد کرده‌اند.[9]

بزرگداشت


جشنواره علمی خوارزمی

جورج سارتن در کتاب مدخل تاریخ علم خود، نیمه نخست قرن نهم میلادی و قرن سوم هجری قمری را «عصر خوارزمی» نامیده است، و «اریستید مار» نوشته است: امروزه یک موضوع تاریخی را نمی‌توان انکار کرد که محمدبن موسی خوارزمی معلم واقعی ملل اروپایی جدید در علم جبر بوده است.[14] جشنوراه خوارزمی نام یک جشنواره علمی در ایران است که به منظور ارج نهادن به خدمات "ابوجعفر محمد بن موسی خوارزمی" با این نام در دو بخش دانش‌آموزی (تحت نام جشنواره جوان خوارزمی) و دانشجویی (تحت نام جشنواره بین‌المللی خوارزمی) برگزار می‌گردد.

در تقویم چهارم آبان به مناسبت بزرگداشت "ابوجعفر محمد بن موسی خوارزمی" روز جبر نامیده شده است.

گفتنی است در سال 1362 هجری شمسی برابر 1983 میلادی، به مناسبت هزار و دویستمین سالگرد تولد خوارزمی یادنامه‌ای به زبان روسی در 260 صفحه و مشتمل بر 16 مقاله در مسکو و یادنامه? دیگری در تهران به زبان فارسی و به همت کمیسیون ملی یونسکو منتشر شده است.

میرمیران